Author Affiliations
Abstract
1 Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
2 State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
3 Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering (IAPME), University of Macau, Macau, China
4 School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
5 State Key Laboratory of Applied Optics, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
6 Department of Materials Science and Engineering, and ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
High-performance infrared (IR) photodetectors made by low dimensional materials promise a wide range of applications in communication, security and biomedicine. Moreover, light-harvesting effects based on novel plasmonic materials and their combinations with two-dimensional (2D) materials have raised tremendous interest in recent years, as they may potentially help the device complement or surpass currently commercialized IR photodetectors. Graphene is a particularly attractive plasmonic material because graphene plasmons are electrically tunable with a high degree of electromagnetic confinement in the mid-infrared (mid-IR) to terahertz regime and the field concentration can be further enhanced by forming nanostructures. Here, we report an efficient mid-IR room-temperature photodetector enhanced by plasmonic effect in graphene nanoresonators (GNRs)/graphene heterostructure. The plasmon polaritons in GNRs are size-dependent with strong field localization. Considering that the size and density of GNRs are controllable by chemical vapor deposition method, our work opens a cost-effective and scalable pathway to fabricate efficient IR optoelectronic devices with wavelength tunability.
Journal of Semiconductors
2020, 41(7): 072907
作者单位
摘要
1 Department of Materials Science and Engineering and ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
2 Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
3 Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering (IAPME), University of Macau, Macau, China
4 Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
5 Jiangsu Key Laboratory of Advanced Laser Materials and Devices, Jiangsu Collaborative Innovation Center of Advanced Laser Technology and Emerging Industry, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
plasmonic semiconductors fiber laser modelocking ultrafast generation 
Frontiers of Optoelectronics
2020, 13(2): 139
Author Affiliations
Abstract
1 Shenzhen University, China
2  Nanjing University of Science and Technology, China
3 Monash University, Australia

The emergence of new materials can push scientific development and even lead to a new industrial revolution. The discovery of graphene has attracted more and more attention from society due to their excellent optics and electricity properties. Graphene has been widely used in optoelectronic devices, such as an optical modulator, polarizer, photoelectric detector, and ultrafast laser. In addition, there is a remarkable transition towards other nanomaterials in recent years. Apart from topological insulators (TIs), transition metal dichalcogenides (TMDs), and monoelemental two-dimensional (2D) materials, composites and heterogenous layered materials are also worthy of mention.

Chinese Optics Letters
2019, 17(2): 020001
Han Zhang 1,4,*Qiaoliang Bao 2,5,*Zhipei Sun 3,6,*
Author Affiliations
Abstract
1 Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen 518060, China
2 Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
3 Department of Electronics and Nanoengineering, QTF Centre of Excellence, Aalto University, Tietotie, Finland
4 e-mail: hzhang@szu.edu.cn
5 e-mail: qiaoliang.bao@monash.edu
6 e-mail: zhipei.sun@aalto.fi
We introduce the background and motivation of this feature issue of two-dimensional layered materials for ultrafast lasers. A brief summary of the seven collected articles in this feature issue is also given.
Ultrafast lasers Nonlinear optics, materials Modulators 
Photonics Research
2018, 6(10): 1000TDL1
Author Affiliations
Abstract
1 Shenzhen University, China
2 Nanjing University of Science and Technology, China
3 Monash University, Australia

Scientists are in the constant search of novel materials, or innovative applications of existing materials to solve problems we face in our everyday life. Although graphene, the two-dimensional (2D) form of carbon, has been a star player for the past decade, there is a significant shift towards other noncarbon materials in recent years. Apart from the large family of transition metal dichalcogenides (TMDs), mono-elemental materials, such as phosphorene, arsenene, antimonene, and silicene, are rapidly gaining attention. Composites and heterogenous layered structures are also worthy of interest.

Chinese Optics Letters
2018, 16(2): 020001
Author Affiliations
Abstract
1 Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
2 Department of Materials Science and Engineering, Monash University, Clayton 3800, Australia
Black phosphorus (BP) is a promising material for ultrafast and broadband photodetection because of its narrow bandgap from 0.35 eV (bulk) to 1.8 eV (monolayer) and high carrier mobility. Although photodetectors based on BP with different configurations have been reported, high photosensitivity was mostly observed in the visible range. A highly efficient BP-based infrared photodetector operated in the telecom spectral range, especially at 1550 nm, has not been demonstrated. Here, we report a Schottky-type photodetector based on thin BP flakes, operating in a broad spectral range from visible (635 nm) to infrared (1550 nm). A responsivity as high as 230 A·W 1 was achieved at 1550 nm with a source-drain bias of 1 V. The rise time is 4.8 ms, and the fall time is 6.8 ms. Under light illumination and external bias, the Schottky barrier between the BP and metal was reduced, leading to efficient photocurrent extraction. The unprecedented performance of the BP photodetector indicates intriguing potential for sensing, imaging, and optical communication.
040.5160 Photodetectors 160.1890 Detector materials 
Chinese Optics Letters
2018, 16(2): 020002
Author Affiliations
Abstract
1 Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, China
2 Tianjin Union Medical Center, Tianjin 300121, China
3 Institute of Modern Optics, Nankai University, Tianjin 300071, China
4 College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, China
5 e-mail: jingbu@szu.edu.cn
Because of the fingerprint-like specificity of its characteristic spectrogram, Raman spectral imaging has been applied widely in various research areas. Using a combination of structured illumination with the surface-enhanced Raman scattering (SERS) technique, wide-field Raman imaging is developed with a significant improvement in spatial resolution. As a result of the relatively narrow Raman characteristic peaks, optically encoded SERS nanoparticles can be used to perform multiplexed imaging. The results show excellent superresolution wide-field multiplexed imaging performance. The developed technique has extraordinary potential for applications in biological imaging and other related fields.
Raman microscopy Surface-enhanced Raman scattering Superresolution 
Photonics Research
2018, 6(6): 06000530
Author Affiliations
Abstract
1 Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
2 Department of Materials Engineering, Monash University, Clayton, Victoria 3800, Australia
Atomically thin MoS2 films have attracted significant attention due to excellent electrical and optical properties. The development of device applications demands the production of large-area thin film which is still an obstacle. In this work we developed a facile method to directly grow large-area MoS2 thin film on SiO2 substrate via ambient pressure chemical vapor deposition method. The characterizations by spectroscopy and electron microscopy reveal that the as-grown MoS2 film is mainly bilayer and trilayer with high quality. Back-gate field-effect transistor based on such MoS2 thin film shows carrier mobility up to 3.4 cm2 V?1 s?1 and on/off ratio of 105. The large-area atomically thin MoS2 prepared in this work has the potential for wide optoelectronic and photonic device applications.
Materials and process characterization Materials and process characterization Spectral properties Spectral properties Thin film devices and applications Thin film devices and applications Thin films Thin films other properties other properties 
Photonics Research
2015, 3(4): 04000110

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!